Exposure to Groundwater

Routes and intensity depend on...

"destination" (uses) of contaminated groundwater

AND

nature of contaminants

Exposure to Groundwater, Domestic

Exposure to Groundwater, Non Domestic

Which Exposure Routes Should be Evaluated ??

 ANS: Need a good conceptual model as well as knowledge of types of contaminants

Commonly Evaluated Exposure Routes

Ingestion

Inhalation

Dermal

Ingestion

- In the past, typically only route evaluated
- Only exposure route considered in MCLs
- GW ingested through
 - Drinking
 - Inadvertently-swimming, showering, etc
- Straightforward evaluation

Ingestion

Dose (measure of exposure intensity)

depends on:

- Concentration
- Ingestion rate
- Exposure frequency
- Exposure duration
- Body weight

these factors
are common
to all exposure
assessments

Exposure Factors- Ingestion

Exposure	Domestic	Domestic	Occupational
Factor			
	Adult	Child	Adult
Concentration	Site-	Site-	Site-specific
	specific	specific	
IR (liters/day)	2	1	1
EF (days)	350	350	250
ED (years)	30	30	25
BW (kg)	70	15	70

Dose Determination

- Dose typically normalized for body weight
- Lifetime average daily dose, "LADD" (carcinogens)
- Average daily dose, "ADD" (non-carcinogens)

Dose
$$_{(mg/kg-day)} = \frac{Conc_{(mg/l)} * IR_{(l/d)} * EF_{(d/yr)} * ED_{(yr)}}{BW_{(kg)} * AT_{(yr)} * 365_{(d/yr)}}$$

Inhalation

- Not included in MCLs
- Is recognized within risk assessment community as a significant exposure route for volatiles in domestic water
- Volatile: 1) Henry's Law Constant > 1E-5
 - 2) MW < 200

Inhalation

- Contaminant in groundwater is transferred to air (tap water, vapor intrusion)
- Simple to complex models exist to approximate
 e.g. Foster and Chrostowski (1987)
- Simple model used in tap water screening tables (EPA Regions 3, 6, 9)
 - Generic "volatilization factor"

Inhalation Dose Depends On....

- Concentration (volatilization factor, 0.5)
- Breathing rate
- Exposure frequency
- Exposure duration
- Body weight

Exposure Factors-Inhalation

Exposure Factor	Residential	Residential	Occupational
	Adult	Child	Adult
Concentration	Site-	Site-	Site-specific
	specific	specific	
BR (m3/day)	20	12 (10)	20
EF (days)	350	350	250
ED (years)	30	30	25
BW (kg)	70	15	70

Dose Determination

Dose
$$_{(mg/kg-day)} = \frac{\text{Conc}_{(mg/l)} * BR_{(m3/d)} * EF_{(d/yr)} * ED_{(yr)} * VF}{BW_{(kg)} * AT_{(yr)} * 365_{(d/yr)}}$$

Volatilization Factor $\{VF\} = 0.5$

Dermal

- Recognized more recently as possibly significant
- Residential exposure primarily through bathing
- Can, for some contaminants, exceed ingestion or inhalation exposures
- Risk Assessment Guidance for Superfund (RAGS, Part E)-- draft dermal guidance

Dermal Dose Depends On...

- Concentration
- Skin Surface Area
- Permeability Coefficient (PC)
- Event Duration (t_{event}) and Event Frequency (EV)
- Exposure Frequency
- Exposure Duration
- Body Weight

Exposure Factors-Dermal

Exposure Factor	Residential	Residential	Occupational
	Adult	Child	Adult
Skin Surface Area (cm2)	18,000	6,600	Site-specific
Permeability Coefficient	Chemical- specific	Chemical- specific	Chemical- specific
Event Duration (t _{event}) (hours)	0.58	1	Site-specific

Exposure Factors-Dermal

- Other chemical specific factors for organic chemicals include:
 - Fraction absorbed from water
 - Lag time per event
 - Time to reach steady-state
 - Ratio of PC of a compound through "dead"
 skin and viable epidermis

Dose Determination

Absorbed Dose =
$$\underline{DA}_{event} * EV * ED * EF * SA$$

 $\underline{BW} * AT * 365 (d/yr)$

Absorbed Dose-mg/kg-day

DA_{event}- mg/cm2-event

EV- events/day

ED – years

EF – days/year

SA - cm2

BW - kg

AT - yr

Route-Specific Dose Comparison – Tapwater

Dose (mg/kg-day)

Contaminant	Ingestion	Inhalation	Dermal
(0.1 mg/l)			
1,2-	0.0012	0.0059	0.00054
Dichloroethane			
DDT	0.0012	NV	0.14
Acrylonitrile	0.0012	0.0059	0.00012
Carbon	0.0012	0.0059	0.0032
Tetrachloride			21

Comparisons of Risks (excess cancer risks)

Contaminant	Ingestion	Inhalation	Dermal
1,2- Dichloroethane	1.1E-4	5.4E-4	4.9E-5
DDT	4.1E-4	NV	4.8E-2
Acrylonitrile	6.5E-4	1.4E-3	6.5E-5
Carbon Tetrachloride	1.6E-4	3.1E-4	4.2E-4

So, how do you know when to evaluate which exposure pathway?

- Highest dose does not always equate to highest risk---toxicity a factor also
- Use a risk-screening table (Region 3,6,9)that includes ingestion and inhalation exposures
- Number of contaminants that are absorbed significantly via dermal route is low
 - EPA recommends evaluating only chemicals that contribute > 10% of oral dose

The End!